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ABSTRACT 
In this paper, we developed a new approach to 
detection of disease outbreaks based on wavelet 
transform. It is capable of dealing with two problems 
found in real-world time series data, namely, negative 
singularity and long-term trends, which may degrade 
the performance of current approaches to outbreak 
detection. To test this approach, we introduced 
artificail disease outbreaks and negative singularities 
into a real world dataset and applied it and two other 
algorithms—autoregressive (AR) and Multi-resolution 
Wavelet Auto-regressive (MWAR) — to this dataset. We 
compared the performance of these algorithms in terms 
of sensitivity, specificity and timeliness. The results 
showed that our approach had similar sensitivity and 
specificity and slightly better timeliness compared to 
the other two algorithms. When we introduced negative 
singularities, its performance did not degrade as much 
as the other two algorithms' performance. We conclude 
that our approach to detection, when compared to 
traditional approaches, may not be as susceptible to 
degradation of performance caused by negative 
singularities. 
 

INTRODUCTION 
 
A key research topic in the field of early-warning 

public health surveillance is the performance of 
algorithms used to detect outbreaks from surveillance 
data1,5. In recent years, several algorithms have been 
proposed and applied, including AR, ARIMA, 
SARIMA, CuSUM, RLS, and Serfling.1-5 Almost all 
are based on the idea of predicting the present data 
value from historical data, and then comparing the 
prediction with the observed value.  

Real-world datasets present many challenges to the 
developers of such algorithms, including noisy data, 
periodic variations on several scales (which can include 
daily, weekly, monthly, and/or yearly periodicities), 
variations due to events other than public-health threats 
(for example, holidays), and  long-term trends that do 
not vary periodically (for example, if the data are sales 
of over-the-counter medications, the long-term trend 
may increase as the number of retailers monitored 
increases, or as the market share of a single retailer 
increases).  In this paper, we present an approach 
designed to address a problem in real-world datasets 
known formally in the signal-processing literature as 
negative singularity while also taking into account 

seasonal periodicity in data due to increased incidence 
of respiratory disease in winter. 

For the purposes of this study, we defined negative 
singularity in a time series as a data value significantly 
lower than the values that immediately precede and 
follow it, causing a discontinuity or a sudden break in 
the series (For a formal mathematical definition, see 
[6]). They are often the result of holidays and severe 
weather, when for example, fewer people go to the 
store to purchase over-the-counter medications or visit 
emergency rooms.  Another common cause of negative 
singularities in real-time monitoring systems is network 
downtime, which may cause an absence of data for a 
time period. Negative singularities often cause false 
alarms in sliding window based algorithms (e.g.  MA, 
AR, ARIMA). These abnormal points make the 
prediction for the data points that follow drop 
significantly (Figure 1).  If the negative singularity 
lowers the prediction enough, then it will cause the data 
points that follow—which in the absence of any 
abnormalities, return to usual levels—to exceed the 
prediction enough to trigger an alarm.  

 

 
 
 

 
 
 
 In this paper, we introduce a Wavelet-based 

Anomaly Detector (WAD) that we designed to be 
robust to the presence of negative singularities.  We 
hypothesized that its performance would be comparable 
to existing algorithms for outbreak detection in a 
dataset with no negative singularities, but would remain 
high when we introduced negative singularities whereas 
the performance of exiting algorithms would suffer. 

  

Figure 1 - An example of singularity problem. At the time point
indicated by the green arrow, an alarm sounds, because the actual
signal greatly exceeds the prediction (which is depressed by the
singularity occurring in the preceding time interval) 



 

 

 METHODS 
 
Wavelet Transform 

Wavelet transforms are often applied in the fields 
of signal and image processing. They transform a signal 
into different frequency bands by dilating and 
translating two basis functions.7 They derive from the 
spectral decomposition theorem, which states that any 
time series can be broken down into multiple 
statistically independent time series—called resolutions, 
each representing the contribution of oscillations of 
different frequencies.11 The lower the frequency, the 
longer the trend that a given resolution reflects. By 
summing all the resolutions, we can exactly reconstruct 
the original data. Furthermore, unlike moving averages, 
wavelet decomposition does not introduce a time-delay 
into the signal—the temporal information of the raw 
data is preserved in each resolution.  In other words, the 
oscillations in each resolution are not phase shifted 
relative to the original time series. 

Using wavelet transform, researchers developed 
multiresolution-based predictors7-9. Those predictors 
first decompose a time series into several resolutions. 
Then, they make a one-step prediction independently 
for every resolution. The combination of all the 
predictions for all the resolutions is then summed to 
obtain the expected value for the current data point. The 
model applied to each individual resolution to make 
predictions can be a neural network 8, AR9, or any other 
time series analysis algorithm. 
Wavelet-based Anomaly Detector (WAD) 

Instead of employing all the wavelet resolutions, 
we focus on the lowest frequency level (baseline), and 
developed an algorithm, named Wavelet-based 
Anomaly Detector (WAD). WAD removes seasonal 
periodicity by subtracting a long-term trend from a time 
series. (figure 2) When detecting an outbreak on dayi: 

 
1. Use wavelet transform to construct the baseline of 

the historic time series (from day1 to dayi-1), which 
represents the long term trend (Trend Data) 

2. Remove long term trend from the time series to 
obtain residual of day1 to dayi-1 (Residual Data) 

3. Obtian dayi’s residual by subtracting dayi-1‘s trend 
value from dayi. 

4. Signal an alarm when dayi‘s residual value exceeds 
the alarm threshold, which is based on the 
statistical distribution of historical residual values. 
 
In our experiments, we noted that the residual data 

for a time series created from emergency department 
(ED) visits with a respiratory chief complaint 
(discussed in the next section) roughly follow a normal 
distribution (Figure 3), so we selected alert threshold 
values as positive multiples of the standard deviation of 

the residual time series (we ignore significantly low 
values).  

There are two important differences between WAD 
and multi-resolution-based predictors. First, instead of 
decomposing the time series into multiple resolutions, 
WAD derives only one low-frequency (on the scale of 
months) resolution, and then subtracts that resolution 
from the original signal.  We detect outbreaks in the 
residual of the long-term trend. Second, WAD does not 
apply a complex model to the residual data. 

 

 
 
 
 

 
 

 
 

 
 
In this study, we used the 5th level of the wavelet 

transform to remove seasonality with a period more 
than 32 days, such as the annual wintertime increase in 
respiratory illness. After this transformation the residual 
presents a theoretical mean of zero that does not change 
over time and a variance that does not vary periodically 
(a mathematical proof can be found in [11]). Note that 
negative singularities become negative values in the 
residual.  
Dataset 

To test the performance of WAD, we compared 
WAD to AR and a multi-resolution (5 levels) AR 

Figure 2 - An illustration of wavelet transform.  Subplot 1
presents the raw dataset and its trend, which is the lowest
frequency series among 5 levels of wavelet decompositions.  The
trend subtracted from raw data gives the residual data presented
in subplot 2.

Figure-3 - Plot of the residuals, which roughly follow normal 
distribution.



 

 

predictor (MWAR), both of which used a 3-day slide 
window, on a real world dataset. The comparison is 
carried out in a real time mode, which means when 
detecting a possible outbreak on dayi, the data value 
beyond this point are unseen for all the algorithms. The 
dataset was a collection of ED visits of patients with 
respiratory prodrome from several hospitals in 
Pittsburgh. The study period was Aug 1, 2000 to May 
27, 2001, a total of 300 days. Figure 4 shows a plot of 
the data. The training period comprises the first 200 
days of the study period. The test period comprises the 
remaining 100 days in the study period (the period after 
the vertical dashed line in Figure 4). To our knowledge, 
no significant outbreaks of respiratory disease or 
negative singularities occurred during the study period. 

 

 
 
 
Outbreak Simulation 

Because there were no known outbreaks during the 
study period, we assumed artificial outbreaks by adding 
a certain number of visits with respiratory prodrome to 
the original data. We modeled the distribution of cases 
over the 7-day period using the following function: 0.4, 
0.8, 1.2, 1.6, 1.2, 0.8 and 0.4 times the standard 
deviation of the whole dataset from the first day 
through the 7th day, respectively. The shape of the 
artificial outbreak is illustrated in Figure 5. We created 
multiple test datasets by adding the outbreak starting on 
each day of the test period, resulting in a total of 94 test 
datasets (each dataset has an artificial outbreak starting 
on one of the first 94 days of the test period).  

 

 
 

 
 

 
 
Negative Singularity Simulation 

To test the algorithms’ performance in the presence 
of negative singularity, we randomly picked 2 days in 
each dataset, and introduced negative singularities on 
those days by reducing the counts on those two days to 
10% of their original value.  Then we recomputed the 
performance of each algorithm, and compared the 
results pre and post introduction of those singularities. 
Measurements 

We defined a true positive alarm to be any alarm 
within the outbreak time window. Any alarm that 
occurred outside the 7-day duration is regarded as a 
false alarm. Accordingly, we computed sensitivity, 
specificity, and area under the ROC curve as follows: 

Sensitivity: number of true alarms within the 
outbreak period / total number of spikes over all 
test datasets.  
Specificity: number of non-alarm days in each test 
dataset / total number of days in all test datasets. 
We plotted sensitivity and specificity on ROC 

curves12 by varying the detection threshold as multiple 
times standard deviation of the monitor data (from 0 to 
5 with a step of 0.1. A threshold out of this range made 
the sensitivity and specificity of all three algorithms 0 
or 1 in the experiments). 

To compare the timeliness of outbreak detection of 
the three algorithms, we also performed an AMOC 
(Activity Monitor Operating Characteristic) analysis10. 
In an AMOC analysis, the X-axis is the number of false 
alarms and the Y-axis represents the benefit of a true 
alarm. For the purposes of this study, we define benefit 
as the timeliness of a true alarm relative to the 4th day of 
the outbreak.  Therefore, we computed the benefit score 
as 5-t, for t<=4, where t is the day when the alarm is 
signaled. Specifically, if the alarm sounds on day 1, the 
Y axis will take value 4. If it sounds on day 5 or later, 
then the benefit score is zero. Note that the higher the 
score, the earlier the detection of the artificial outbreak. 

 

 
 

 
 
 

Figure 6 - ROC curve of three algorithms 

Figure - 4 Plot of the whole dataset from 08/01/2000 to 05/27/2001. 
Training and testing dataset are separated by the dashed line. 

Non-outbreak period Non-outbreak periodArtificail outbreak 

Figure - 5 Illustration of the artificial spike with a duration of 7 
days, which is multiple times the standard deviation of the whole 
dataset in respective days. 

Table 1- Area under the ROC curve of three algorithms



 

 

Algorithms AR WMAR WAD 
Area Under Curve 0.9002 0.9049 0.9208 

 

 
 

RESULTS 
 
Figure 6 illustrates the performance of the three 

algorithms as ROC curves. While MWAR does not 
show much improvement compared with AR model, 
WAD’s ROC curve is higher than the other two plots at 
almost every detection threshold value.  The area under 
the ROC curve for WAD is larger than the areas under 
the ROC curves for AR and MWAR (Table 1).  In the 
AMOC analysis, WAD obtained a higher score for 
every detection threshold (Figure 7). In other words, 
WAD consistently detected the artificial outbreaks 
earlier than the other two algorithms. 

When simulated negative singularities were 
introduced into the test datasets, the performance of the 
detection algorithms, as measured by area under the 
ROC curves, decreased (Table 2).  The area under the 
ROC curve decreased by 0.0114 for AR, by 0.0175 for 
MWAR, and by 0.0052 for WAD. 
 

Algorithms AR WMAR WAD 
Area Under Curve 0.8888 0.8874 0.9156 

 
Figure 8 shows how both AR and MWAR models 

try to exactly reconstruct the real data, and in fact, it did 
a reasonable job except for an obvious time delay. 
However, a false alarm was raised because of the 
negative singularity point. On the contrary, the negative 
singularity has virtually no effect on WAD’s trend, and 
it is unable to create a high residual value of the 
following day in detection stage. As a result, the 
negative singularity lowers the performance of AR and 
MWAR to a greater extent than WAD. 

 
 

 
 
 
 
 
 
 

DISCUSSION 
WAD had comparable performance to AR and 

MWAR for the detection of outbreaks.  Notably, it had 
a slightly, yet consistently, better timeliness of outbreak 
detection than AR and MWAR.  When we introduced 
just two negative singularities, however, the 
performance of AR and MWAR—as measured by area 
under the ROC curve—degraded to a larger extent than 
WAD. We therefore conclude that the performance of 
WAD on data with negative singularities may degrade 
to a lesser extent than the performance of existing 
algorithms. 

The reason that negative singularity points affect 
WAD’s performance less than AR and MWAR is that 
those points have little influence on the long-term trend 
of the time series, and WAD does not signal alarms on 
the residual points which follow the significantly 
negative residual values that result from negative 
singularities. Other methods deal with negative 
singularities by using a larger moving-average time 
window to calculate the current prediction value, so that 
they dilute the singularity point’s effect on the 
prediction. However, larger windows cause longer time 
delays (or phase shifts) relative to the original signal, 
risking delays in outbreak detection (that is, a decrease 
in timeliness). 

We expected WAD to outperform AR when no 
singularities are present because WAD addresses the 
problem of long-term trends in time series (mean and 
variance change with time), but AR does not.  The 
reason that long-term trends in data degrade the 

Figure 7 – AMOC curve of three algorithms

Table 2- Area under the ROC curve of three algorithms

Figure 8 – Subplot 1 illustrates the raw dataset with 2 simulated
singularities and the prediction values of AR and MWAR, as well
as the trend generated by wavelet decomposition. The following
days of negative singularities do not present a significant high
value in residual data, which is presented in subplot 2, while the
prediction values of these days, obtained from AR and MWAR,
exceed the monitor value quit a lot. 



 

 

performance of AR is that AR typically uses a narrow 
time window (3 days window in our experiments) to 
predict a value, so that local fluctuations bias its 
predictions for the long-term trend. When the long-term 
trend is increasing, the values predicted by AR are 
usually lower than the real data. In that case, the 
algorithm will be more sensitive to noise in the positive 
direction, causing false alarms. On the other hand, 
when the long-term trend is decreasing, the predicted 
values tend to be higher than actual data, so that real 
increases in the data due to outbreaks are missed, or 
detected later than they otherwise might have been.  

MWAR, on the other hand, does address seasonal 
trends in time series by applying wavelet transform to 
generate multiple time series each of which has a mean 
and variance that do not change with time.   Thus, the 
fact that MWAR did not outperform AR in the absence 
of negative singularities is surprising.  Repetition of this 
result using different sets of ED data, different data 
types (such as over-the-counter sales), outbreak sizes 
and shapes, and so on would be necessary in our future 
work to conclusively demonstrate that MWAR has no 
added value over AR, which is unlikely.  It could be 
that the performances were similar due to certain 
attributes of the dataset, outbreak size and shape, and so 
on that we used in this study.  

 WAD does not introduce a phase shift or time 
delay in the residual relative to the original signal. That 
is the most likely reason it had improved timeliness of 
detection over AR and MWAR in the AMOC analysis.   

An advantage of WAD over MWAR is 
computational expense. MWAR requires n+1 wavelet 
transforms to decompose the raw data into n+1 
resolutions, where n is the maximum level of resolution, 
and it applies AR n+1 times (once per resolution). 
WAD, on the other hand, only performs one wavelet 
transform to remove the long-term trend and then 
applies a simple detection algorithm to the residual data 
once. Because the wavelet transform computation 
dominates the overall efficiency of the detection system, 
WAD is faster than MWAR.  

WAD is also characterized by its simplicity in the 
following two aspects. First, unlike SARIMA or 
Serfling methods, WAD does not need multiple years 
of training data.  For instance, WAD only needs a 
minimum of 32 historic points to calculate the standard 
deviation of the residual for use in setting detection 
thresholds. The reason we used 200 days of training 
period was to better train the AR model without 
possible short-term biases. Second, WAD is a non-
parametric model, so the user does not have to do all 
the adjustments of parameters as in the majority of 
traditional algorithms. 

One potential drawback to WAD is that if the real 
outbreak lasts for more than 2i points, where i is the 
level of wavelet transform (in our study, i is equal to 5), 

the oscillation caused by the outbreak may be removed 
by wavelet transform, so that WAD will not detect the 
outbreak. We expect that a bio-terrorism attack will 
cause a significant increase of short enough duration 
that this problem will not cause WAD to miss a 
bioterrorism attack. Nevertheless, it is not a given and 
thus it is important to be aware of this limitation. 
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